This post may be updated continuously.

Category theory

Limit
Inverse limit
Projective limit
Colimit
Direct limit
Inductive limit
origin of arrows target of arrows
product coprodut
product (inverse limit) in
the 2nd variable
coproduct (direct limit) in
the 1st var
$\operatorname{Hom}$ sends … to product
cartesian product disjoint union in $\textsf{Set}$
direct product = direct sum $\oplus$ in $\textsf{Ab}$, $R$-$\textsf{Mod}$, $K$-$\textsf{VectSpace}$, etc.
direct product free product in $\textsf{Grp}$
product topology
coarsest among conti. projections $X\to X_i$
disjoint union topology
finest among conti. injections $X_i\to X$
in $\textsf{Top}$
pullback
limit of \(*\rightarrow*\leftarrow*\)
pushout
colimit of \(*\leftarrow*\rightarrow*\)
equalizer
$\text{coeq}(f,g) \to X\stackrel{f,g}{\rightrightarrows}Y$
coequalizer
$X\stackrel{f,g}{\rightrightarrows} Y \to \text{coeq}(f,g)$
kernel cokernel (quotient)
terminal object initial object
$p$-adic integers $\mathbb{Z}_p$
$\mathbb{Z}/p^{n+1}\mathbb{Z}\stackrel{\text{proj}}{\to}\mathbb{Z}/p^{n}\mathbb{Z}$
Prüfer group $\mathbb{Z}(p^\infty)$
$\mathbb{Z}/p^{n}\mathbb{Z}\to\mathbb{Z}/p^{n+1}\mathbb{Z}$; $a\mapsto pa$
profinite integer $\hat{\mathbb{Z}}\cong \prod_{p<\infty} \mathbb{Z}_p$
$\mathbb{Z}/mn\mathbb{Z}\stackrel{\text{proj}}{\to}\mathbb{Z}/n\mathbb{Z}$
$\mathbb{Q}/\mathbb{Z}$
$\mathbb{Z}/n\mathbb{Z}\to\mathbb{Z}/mn\mathbb{Z}$; $a \mapsto ma$
Stalk of sheaf $\mathcal{F}_x$
$\mathcal{F}(U)\to\mathcal{F}(V)$; $s \mapsto s|_V$

Congruence subgroups

(From Diamond & Shurman)

\[\begin{matrix} \operatorname{SL}_2(\mathbb{Z}) & & M_k(\operatorname{SL}_2(\mathbb{Z}))\\ \cup & & \cap \\ \Gamma_0(N) & = \left\{ \begin{pmatrix} * & * \\ 0 & *\end{pmatrix}\pmod{N}\right\} & M_k(\Gamma_0(N))\\ \cup & & \cap \\ \Gamma_1(N) & = \left\{ \begin{pmatrix} 1 & * \\ 0 & 1\end{pmatrix}\pmod{N}\right\} & M_k(\Gamma_1(N)) & = \oplus M_k(N, \chi)\\ \cup & & \cap \\ \Gamma(N) & = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1\end{pmatrix}\pmod{N}\right\} & M_k(\Gamma(N)) \end{matrix}\]

$M_k(\Gamma_1(N)) = \oplus M_k(N, \chi)$ is the direct sum over all Dirichlet characters $\chi$ modulo $N$ and is respected by the Hecke operators, where $M_k(N, \chi) = \left\{ f \in M_k(\Gamma_1(N)) : f[\gamma]_k = \chi(\gamma) f\ \forall \gamma \in \Gamma_0(N) \right\}$